Access to H.E. National Programme Unit | Unit Title: | Astrophysics | | | |----------------------|-------------------------------|------------------------|-----------| | Graded
Unit Code: | GA33PHY22 | Ungraded
Unit Code: | UA33PHY22 | | Pathway(s): | Science and Engineering | | | | Module(s): | Physics | | | | Level: | 3 | Credit Value: | 6 | | Valid from: | 1 st December 2021 | Valid to: | 31/7/2026 | ## The following QAA grade descriptors must be applied if you are delivering the graded version of this unit: | 1 | Understanding of the subject | |---|--------------------------------| | 2 | Application of knowledge | | 4 | Use of information | | 5 | Communication and presentation | | 7 | Quality | | LEARNING OUTCOMES | ASSESSMENT CRITERIA | | |--|--|--| | The learner will: | The learner can: | | | Understand how telescopes work and are used to observe astronomical objects. | 1.1 Describe the principle of an astronomical telescopes consisting of two converging lenses, reflecting and refracting telescopes, including the relative merits of each. Draw ray diagrams for image formation. 1.2 Compare and contrast the differences of radio telescopes and optical telescopes including the structure, positioning, use, resolving and collecting powers. 1.3 Evaluate the use of large diameter telescopes in observing astronomical objects. | | ## Access to H.E. National Programme Unit | LEARNING OUTCOMES | ASSESSMENT CRITERIA | | |---|--|--| | The learner will: | The learner can: | | | 2. Understand how stars are classified. | 2.1 Describe the classification of stars by their luminosity and spectral class, including the interpretation of the Hertzsprung-Russell diagram. | | | | 2.2 Define absolute magnitude with due reference to the terms parsec and light year. | | | | 2.3 Explain the classification of stars by their temperature with reference to black-body radiation. | | | | 2.4 Calculate the black-body temperature of sources using Wien's displacement law. | | | | 2.5 Use the Stefan-Boltzman Law to compare the power output (luminosity) | | | | 2.6 Apply Wien's Law and the Stefan-Boltzman Law to classify stars. | | | Understand concepts in astrophysics and cosmology | 3.1. Describe the "timeline" of the universe as currently theorised by scientists. 3.2. Use the doppler effect to solve calculations related to binary stars, galaxies and quasars and explain the different methods for measuring distances of stars. 3.3. Apply Hubble's Law to interpret and explain the expansion of the universe as currently theorised by scientists. 3.4. Explain what quasars are, including their discovery and formation. 3.5. Explain and evaluate the methods used to detect exoplanets. | |