Access to H.E. National Programme Unit

Unit Title:	Integration				
Graded Unit Code:	GA33MTH06	Ungraded Unit Code:	UA33MTH06		
Pathway(s):	Computing				
	Science and Engineering				
	Construction and the Built Environment				
Module(s):	Maths for Computing				
	Mathematics				
Level:	3	Credit Value:	3		
Valid from:	1st August 2019	Valid to:	31st July 2024		

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
3	Application of skills
7	Quality

LEARNING OUTCOMES	ASSESSMENT CRITERIA	
The learner will:	The learner can:	
Understand how the area under a straightforward curve may be approximated.	Use the trapezium rule to find an approximation for the area under a curve	

Access to H.E. National Programme Unit

Understand the principles and uses of integration	2.1 Express the relationship between differentiation and integration.
	2.2 Integrate expressions of the form ax^n for any values of a and n
	2.3 Use definite integrals to calculate areas under a curve for straightforward polynomial expressions (for regions wholly above or wholly below the a-axis)
	2.4 Use integration to find volumes of rotation for straightforward polynomial curves rotated about the x-axis or the y-axis as appropriate (angles of rotation measured in degrees or radians)
Understand techniques used to integrate more complex functions	3.1 Give the indefinite integrals for e^x , $\frac{1}{x}$, $\sin x$ and $\cos x$
	3.2 Find the indefinite integrals for straightforward expressions using substitution, integration by inspection and combinations of these
	3.3 Find the indefinite integrals for expressions using integration by parts