Access to H.E. National Programme Unit

Unit Title:	Genetics					
Graded Unit Code:	GA33BIO06	Ungraded Unit Code:	UA33BIO06			
Pathway(s):	Health					
	Science and Engineering					
Module(s):	Human Biology Biology					
Level:	3	Credit Value:	3			
Valid from:	31st July 2021	Valid to:	31st July 2026			

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
2	Application of knowledge
5	Communication and presentation
7	Quality

LEARNING OUTCOMES	ASSESSMENT CRITERIA		
The learner will:	The learner can:		
Understand the nature and causes of variation in a population	Use examples to distinguish between continuous and discontinuous variation		
	Explain the roles of genetic makeup and environmental effects in producing variation		
	1.3 Show how mutation and meiosis lead to genetic variation		
	Evaluate the benefits and dilemmas in the use of human twin studies to investigate the causes of variation		

Access to H.E. National Programme Unit

2	Understand the principles of Mendelian inheritance	2.1	Use genetic diagrams to predict the outcomes of monohybrid inheritance
		2.2	Show how the offspring ratios for monohybrid crosses led to the formulation of Mendel's first law of inheritance
		2.3	Use genetic diagrams to predict the outcomes of dihybrid inheritance
		2.4	Show how the offspring ratios for dihybrid crosses led to the formulation of Mendel's second law of inheritance
Appreciate that a range of genetic systems apply to different inherited traits		3.1	Use genetic diagrams to predict the outcomes of inheritance involving: a) Sex-linkage b) Multiple allele systems (e.g ABO blood groups) c) Epistasis
3			Show how the offspring ratios for dih crosses led to the formulation of Mer second law of inheritance Use genetic diagrams to predict the outcomes of inheritance involving: a) Sex-linkage b) Multiple allele systems (e.g ABO be groups)