Access to H.E. National Programme Unit

Unit Title:	Nuclear Physics			
Graded Unit Code:	GA33PHY04	Ungraded Unit Code:	UA33PHY04	
Pathway(s):	Science and Engineering			
	Construction and the Built Environment			
Module(s):	Psychology			
Level:	3	Credit Value:	3	
Valid from:	31 st July 2021	Valid to:	31st July 2026	

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
2	Application of knowledge
3	Application of skills
7	Quality

LEARNING OUTCOMES	ASSESSMENT CRITERIA	
The learner will:	The learner can:	
Understand the nuclear model of the atom	Describe Rutherford's scattering experiment and explain its significance in understanding the structure of atoms	
	Explain how the results of scattering experiments can be used to an estimate of the size of the nucleus	
2. Understand nuclear instability	2.1 Sketch a graph of N against Z for stable and unstable nuclei	
	2.2 Use Einstein's mass energy equation to explain the binding energy of the nucleus	
	2.3 Explain the decay of unstable nuclei involving γ , β +, β -, nucleon emission and electron capture	

Access to H.E. National Programme Unit

		2.4 Explain the changes in Z and A caused by different types of nuclear decay
Understand radioactive decay		3.1 State the exponential law of radioactive decay
		3.2 Define half-life, decay constant and activity of a radioactive material
		3.3 Solve problems involving the exponential law and radioactive decay
4.	Inderstand nuclear fission and nuclear usion	4.1 Sketch a graph of binding energy per nucleon against nucleon number
		4.2 Explain nuclear fission and outline common applications of nuclear fission
		4.3 Describe nuclear fusion and explain its significance
5.	Understand the safe uses of radio isotopes	5.1 Explain the difference in the penetrating power of different the types of radiation resulting from radioactive decay
		5.2 Identify risks associated with radioactive sources and explain the safety precautions used to protect workers and others