Access to H.E. National Programme Unit

Unit Title:	Fluid Mechanics					
Graded Unit Code:			UA33PHY08			
Pathway(s):	Science and Engineering					
	Construction and the Built Environment					
Module(s):	Physics					
Level:	3	Credit Value:	3			
Valid from:	31 st July 2021	Valid to:	31st July 2026			

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
2	Application of knowledge
3	Application of skill
7	Quality

LEARNING OUTCOMES	ASSESSMENT CRITERIA	
The learner will:	The learner can:	
Understand the properties of fluids and the principles of fluid statics	1.1 Define fluid properties of pressure, density and viscosity and solve problems involving these	
	1.2 Distinguish between ideal fluids and real fluids	
Understand static pressure in fluids and its applications	2.1 Explain absolute pressure and gauge pressure and calculate how atmospheric pressure changes with altitude	
	2.2 Solve problems involving static pressure	
	2.3 Define Pascal's principle and apply it to engineering examples	
	2.4 Define Archimedes' principle and apply it to solve problems	

Access to H.E. National Programme Unit

3.	Understand the concepts involved in fluid flow	3.1	Define the terms incompressible flow, compressible flow and flow rate
		3.2	Explain and apply the principle of fluid continuity
		3.3	Define velocity of flow, pressure and friction loss in terms of fluid head and solve problems involving these
4.	Understand the dynamics of fluids and conservation of energy for a steady flow		Derive Bernoulli's equation of motion for a steady incompressible flow
		4.2	Apply Bernoulli's equation to the flow of liquids in pipes