Access to H.E. National Programme Unit

Unit Title:	Kinetics and Redox Systems					
Graded Unit Code:	GA33CHE13	Ungraded Unit Code:	UA33CHE13			
Pathway(s):	Science and Engineering					
Module(s):	Chemistry					
Level:	3	Credit Value:	3			
Valid from:	1 st August 2019	Valid to:	31 st July 2028			

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
3	Application of skills
7	Quality

LEARNING OUTCOMES		ASSESSMENT CRITERIA	
The learner will:		The learner can:	
1.	Know that reactions only occur when collisions take place between particles having sufficient energy	1.1	Explain the significance of activation energy in reactions
2.	Understand the Maxwell-Boltzmann distribution of molecular energies in gasses	2.1	Draw Maxwell-Boltzmann curves for a sample of a gas at different temperatures
		2.2	Explain the effect of temperature on reaction rate using the above curves
		2.3	Use the Maxwell-Boltzmann curve to explain the effect of a catalyst on activation energy and rate of reaction
3.	Know that each reaction has its own unique rate equation	3.1	Use given experimental data to construct rate equations of different reactions with varying orders of reaction
4.	Know how E ^o values are measured and used	4.1	Calculate the E ^o value of a simple cell (e.g. Fe/Fe2+) from given data

Access to H.E. National Programme Unit

LEARNING OUTCOMES	ASSESSMENT CRITERIA		
The learner will:	The learner can:		
	4.2 Apply E ^o value to specified redox reactions (e.g. Cl2 and Kl) to predict the feasibility of the reactions		