Access to H.E. National Programme Unit

Unit Title	Quantum Physics					
Graded Unit Code	GA33PHY21	Ungraded Unit Code	UA33PHY21			
Pathway(s)	Science and Engineering Construction and the Built Environment					
Module(s)	Physics					
Level	3	Credit Value	3			
Valid from	31 st July 2021	Valid to	31 st July 2026			

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
2	Application of knowledge
3	Application of skill
7	Quality

LEARNING OUTCOMES		ASSESSMENT CRITERIA		
The learner will:		The learner can:		
 Understand how theories modern understanding of effect 	Understand how theories of light led to a modern understanding of the photoelectric effect	1.1	Compare the wave theories of light proposed by Newton and Huygens and explain why Newton's theory was preferred	
		1.2	Describe and explain the significance of Young's double slit experiments	
		1.3	Explain the results of experiments to investigate photoelectric emission	
		1.4	Describe Einstein's explanation of photoelectric emission	
		1.5	Define work function (ϕ) and threshold frequency (f_o) and solve problems using the photoelectric equation	

Access to H.E. National Programme Unit

 2. Understand electron configurations in the atom 2.1 Define the electron volt 2.2 Explain line spectra for atomic hydroxidation 	0000
atom 2.2 Explain line spectra for atomic hydr	odon
in terms of transition of electrons be energy levels	etween
2.3 Define ionization energy, excitation energy and excitation potential	
2.4 Solve simple problems involving io energy, excitation energy and excit potential	nization ation
3. Understand Wave-Particle Duality 3.1 Describe evidence for wave-particle duality, e.g. electron diffraction	9
3.2 State De Broglie's hypothesis and equation for the De Broglie wavele	he ngth
3.3 Calculate the De Broglie wavelengt range of particles	h for a