Access to H.E. National Programme Unit

$\left.\begin{array}{l|l|l|}\text { Unit Title: } & \text { Integration } & \\ \text { Graded } & \text { GA33MTH06 } & \begin{array}{l}\text { Ungraded } \\ \text { Unit Code: }\end{array}\end{array}\right)$ UA33MTH06

Pathway(s): | Computing |
| :--- |
| Science and Engineering |
| Construction and the Built Environment |

Module(s):	Maths for Computing Mathematics	
Level:	3	Credit Value:
	3	
Valid from: $:$	$1^{\text {st }}$ August 2019	Valid to:
		$31^{\text {st }}$ July 2024

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
3	Application of skills
7	Quality

LEARNING OUTCOMES

ASSESSMENT CRITERIA

The learner will:

1. Understand how the area under a straightforward curve may be approximated.

The learner can:

1.1 Use the trapezium rule to find an approximation for the area under a curve

| 2. Understand the principles and uses of |
| :--- | :--- | :--- |
| integration |\(\left|\begin{array}{ll}2.1 \& \begin{array}{l}Express the relationship between

differentiation and integration.\end{array}

\hline 2.2 \quad $$
\begin{array}{l}\text { Integrate expressions of the form } a x^{n} \text { for } \\
\text { any values of } a \text { and } n\end{array}
$$

Use definite integrals to calculate areas

under a curve for straightforward

polynomial expressions (for regions wholly

above or wholly below the a-axis)\end{array}\right|\)

