Access to H.E. National Programme Unit

Unit Title:	Differentiation		
Graded Unit Code:	GA33MTH14	Ungraded Unit Code:	UA33MTH14

Pathway(s): $\left.\begin{array}{l}\text { Computing } \\ \text { Science and Engineering } \\ \text { Construction and the Built Environment }\end{array}\right]$

Module(s):	Maths for Computing Mathematics		
Level:	3	Credit Value:	3
Valid from:	$1^{\text {st }}$ August 2014	Valid to:	31st July 2024

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
3	Application of skills
7	Quality

LEARNING OUTCOMES

ASSESSMENT CRITERIA

The learner will:
The learner can:

LEARNING OUTCOMES	ASSESSMENT CRITERIA
The learner will:	The learner can:
1. Understand the principles of differentiation and use differentiation to solve problems	1.1 Correctly use the notation $f^{\prime}(x)$ or $\frac{d y}{d x}$ to represent derivatives of functions 1.2 Differentiate polynomial expressions 1.3 Use first order differentials to find the gradient to a curve for different values of x 1.4 Determine equations for the tangent and the normal at specific points on a curve, e.g. $y=a x^{n}, y=a x^{2}+b x+c$ 1.5 Use first order differentials to determine the maxima and minima for polynomial expressions 1.6 Use first order differentials to determine rates of change and solve problems
2. Use differentiation to sketch quadratic and cubic equations	2.1 Find the co-ordinates of turning points and sketch the graphs of straightforward polynomial functions of third order or less
3. Understand the use some standard derivatives.	3.1 Solve problems involving the derivatives of the functions $e^{k x}, \ln x, \sin k x$ and $\cos k x$ 3.2 Solve problems involving derivatives of functions in the form $f(x) g(x)$ and $f(g(x))$

