Access to H.E. National Programme Unit

Unit Title:	X-ray Spectra and Medical Uses of X-rays			
Graded Unit Code:	GA33PHY02	Ungraded Unit Code:	UA33PHY02	
Pathway(s):	Health			
	Science and Engineering			
	Construction and the Built Environment			
Module(s):	Science for Health			
	Physics			
Level:	3	Credit Value:	3	
Valid from:	1st August 2019	Valid to:	31st July 2024	

The following QAA grade descriptors must be applied if you are delivering the graded version of this unit:

1	Understanding of the subject
2	Application of knowledge
3	Application of skills
7	Quality

LEARNING OUTCOMES	ASSESSMENT CRITERIA	
The learner will:	The learner can:	
Understand the production of X-rays and the operation of the X-ray tube	Describe two mechanisms for the production of X-rays and relate these to X-ray spectra (continuous and line spectra)	
	1.2 Using a diagram describe the structure of an X-ray tube	
	1.3 Describe the production of X-rays by a rotating anode tube	
	Explain the importance of reducing exposure dose and time and describe mechanisms for achieving this	

Access to H.E. National Programme Unit

LEARNING OUTCOMES	ASSESSMENT CRITERIA	
The learner will:	The learner can:	
	Interpret graphs relating X-ray spectra to tube voltage, tube current and target material	
Understand the mechanisms and significance of attenuation	2.1 Define attenuation and explain attenuation of X-rays by scatter, the photo-electric effect, Crompton scatter and pair production	
	Describe how attenuation effects correlate with photon energy, transmission material and distance travelled	
	2.3 Explain the significance of attenuation for conventional medical X-ray imaging	
Understand developments in the medical applications of X-rays.	3.1 Explain the principle of computer aided tomography and the advances that led to the development of the CAT scanner	
	3.2 Explain the use of X-rays in radiotherapy	